Properties

Label 108.95
Modulus 108108
Conductor 108108
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(108, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,17]))
 
pari: [g,chi] = znchar(Mod(95,108))
 

Basic properties

Modulus: 108108
Conductor: 108108
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 108.l

χ108(11,)\chi_{108}(11,\cdot) χ108(23,)\chi_{108}(23,\cdot) χ108(47,)\chi_{108}(47,\cdot) χ108(59,)\chi_{108}(59,\cdot) χ108(83,)\chi_{108}(83,\cdot) χ108(95,)\chi_{108}(95,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Q(ζ108)+\Q(\zeta_{108})^+

Values on generators

(55,29)(55,29)(1,e(1718))(-1,e\left(\frac{17}{18}\right))

First values

aa 1-111557711111313171719192323252529293131
χ108(95,a) \chi_{ 108 }(95, a) 1111e(1318)e\left(\frac{13}{18}\right)e(1118)e\left(\frac{11}{18}\right)e(79)e\left(\frac{7}{9}\right)e(59)e\left(\frac{5}{9}\right)e(16)e\left(\frac{1}{6}\right)e(56)e\left(\frac{5}{6}\right)e(89)e\left(\frac{8}{9}\right)e(49)e\left(\frac{4}{9}\right)e(1718)e\left(\frac{17}{18}\right)e(718)e\left(\frac{7}{18}\right)
sage: chi.jacobi_sum(n)
 
χ108(95,a)   \chi_{ 108 }(95,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ108(95,))   \tau_{ a }( \chi_{ 108 }(95,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ108(95,),χ108(n,))   J(\chi_{ 108 }(95,·),\chi_{ 108 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ108(95,))  K(a,b,\chi_{ 108 }(95,·)) \; at   a,b=\; a,b = e.g. 1,2