Properties

Label 1088.173
Modulus $1088$
Conductor $1088$
Order $16$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1088, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,7,1]))
 
pari: [g,chi] = znchar(Mod(173,1088))
 

Basic properties

Modulus: \(1088\)
Conductor: \(1088\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1088.ck

\(\chi_{1088}(29,\cdot)\) \(\chi_{1088}(173,\cdot)\) \(\chi_{1088}(269,\cdot)\) \(\chi_{1088}(453,\cdot)\) \(\chi_{1088}(789,\cdot)\) \(\chi_{1088}(805,\cdot)\) \(\chi_{1088}(957,\cdot)\) \(\chi_{1088}(1013,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.1730228566815155980950535730783370329718784.1

Values on generators

\((511,69,513)\) → \((1,e\left(\frac{7}{16}\right),e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 1088 }(173, a) \) \(-1\)\(1\)\(e\left(\frac{3}{8}\right)\)\(-i\)\(e\left(\frac{1}{16}\right)\)\(-i\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{1}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1088 }(173,a) \;\) at \(\;a = \) e.g. 2