sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1089, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([44,6]))
pari:[g,chi] = znchar(Mod(1024,1089))
Modulus: | 1089 | |
Conductor: | 1089 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 33 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1089(34,⋅)
χ1089(67,⋅)
χ1089(133,⋅)
χ1089(166,⋅)
χ1089(232,⋅)
χ1089(265,⋅)
χ1089(331,⋅)
χ1089(430,⋅)
χ1089(463,⋅)
χ1089(529,⋅)
χ1089(562,⋅)
χ1089(628,⋅)
χ1089(661,⋅)
χ1089(760,⋅)
χ1089(826,⋅)
χ1089(859,⋅)
χ1089(925,⋅)
χ1089(958,⋅)
χ1089(1024,⋅)
χ1089(1057,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(848,244) → (e(32),e(111))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 |
χ1089(1024,a) |
1 | 1 | e(3325) | e(3317) | e(332) | e(3310) | e(113) | e(119) | e(3317) | e(332) | e(331) | e(115) |
sage:chi.jacobi_sum(n)