Properties

Label 1089.1024
Modulus $1089$
Conductor $1089$
Order $33$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([44,6]))
 
pari: [g,chi] = znchar(Mod(1024,1089))
 

Basic properties

Modulus: \(1089\)
Conductor: \(1089\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(33\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1089.u

\(\chi_{1089}(34,\cdot)\) \(\chi_{1089}(67,\cdot)\) \(\chi_{1089}(133,\cdot)\) \(\chi_{1089}(166,\cdot)\) \(\chi_{1089}(232,\cdot)\) \(\chi_{1089}(265,\cdot)\) \(\chi_{1089}(331,\cdot)\) \(\chi_{1089}(430,\cdot)\) \(\chi_{1089}(463,\cdot)\) \(\chi_{1089}(529,\cdot)\) \(\chi_{1089}(562,\cdot)\) \(\chi_{1089}(628,\cdot)\) \(\chi_{1089}(661,\cdot)\) \(\chi_{1089}(760,\cdot)\) \(\chi_{1089}(826,\cdot)\) \(\chi_{1089}(859,\cdot)\) \(\chi_{1089}(925,\cdot)\) \(\chi_{1089}(958,\cdot)\) \(\chi_{1089}(1024,\cdot)\) \(\chi_{1089}(1057,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 33 polynomial

Values on generators

\((848,244)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 1089 }(1024, a) \) \(1\)\(1\)\(e\left(\frac{25}{33}\right)\)\(e\left(\frac{17}{33}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{10}{33}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{17}{33}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{5}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1089 }(1024,a) \;\) at \(\;a = \) e.g. 2