Properties

Label 109.106
Modulus 109109
Conductor 109109
Order 5454
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(109, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([53]))
 
pari: [g,chi] = znchar(Mod(106,109))
 

Basic properties

Modulus: 109109
Conductor: 109109
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5454
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 109.k

χ109(12,)\chi_{109}(12,\cdot) χ109(20,)\chi_{109}(20,\cdot) χ109(28,)\chi_{109}(28,\cdot) χ109(29,)\chi_{109}(29,\cdot) χ109(31,)\chi_{109}(31,\cdot) χ109(36,)\chi_{109}(36,\cdot) χ109(60,)\chi_{109}(60,\cdot) χ109(61,)\chi_{109}(61,\cdot) χ109(74,)\chi_{109}(74,\cdot) χ109(83,)\chi_{109}(83,\cdot) χ109(84,)\chi_{109}(84,\cdot) χ109(87,)\chi_{109}(87,\cdot) χ109(88,)\chi_{109}(88,\cdot) χ109(94,)\chi_{109}(94,\cdot) χ109(100,)\chi_{109}(100,\cdot) χ109(102,)\chi_{109}(102,\cdot) χ109(104,)\chi_{109}(104,\cdot) χ109(106,)\chi_{109}(106,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ27)\Q(\zeta_{27})
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

66e(5354)e\left(\frac{53}{54}\right)

First values

aa 1-111223344556677889910101111
χ109(106,a) \chi_{ 109 }(106, a) 1111e(1718)e\left(\frac{17}{18}\right)e(127)e\left(\frac{1}{27}\right)e(89)e\left(\frac{8}{9}\right)e(1627)e\left(\frac{16}{27}\right)e(5354)e\left(\frac{53}{54}\right)e(727)e\left(\frac{7}{27}\right)e(56)e\left(\frac{5}{6}\right)e(227)e\left(\frac{2}{27}\right)e(2954)e\left(\frac{29}{54}\right)e(2554)e\left(\frac{25}{54}\right)
sage: chi.jacobi_sum(n)
 
χ109(106,a)   \chi_{ 109 }(106,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ109(106,))   \tau_{ a }( \chi_{ 109 }(106,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ109(106,),χ109(n,))   J(\chi_{ 109 }(106,·),\chi_{ 109 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ109(106,))  K(a,b,\chi_{ 109 }(106,·)) \; at   a,b=\; a,b = e.g. 1,2