Properties

Label 109.4
Modulus 109109
Conductor 109109
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(109, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(4,109))
 

Basic properties

Modulus: 109109
Conductor: 109109
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 109.h

χ109(4,)\chi_{109}(4,\cdot) χ109(34,)\chi_{109}(34,\cdot) χ109(43,)\chi_{109}(43,\cdot) χ109(71,)\chi_{109}(71,\cdot) χ109(82,)\chi_{109}(82,\cdot) χ109(93,)\chi_{109}(93,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

66e(118)e\left(\frac{1}{18}\right)

First values

aa 1-111223344556677889910101111
χ109(4,a) \chi_{ 109 }(4, a) 1111e(16)e\left(\frac{1}{6}\right)e(89)e\left(\frac{8}{9}\right)e(13)e\left(\frac{1}{3}\right)e(29)e\left(\frac{2}{9}\right)e(118)e\left(\frac{1}{18}\right)e(29)e\left(\frac{2}{9}\right)1-1e(79)e\left(\frac{7}{9}\right)e(718)e\left(\frac{7}{18}\right)e(1118)e\left(\frac{11}{18}\right)
sage: chi.jacobi_sum(n)
 
χ109(4,a)   \chi_{ 109 }(4,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ109(4,))   \tau_{ a }( \chi_{ 109 }(4,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ109(4,),χ109(n,))   J(\chi_{ 109 }(4,·),\chi_{ 109 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ109(4,))  K(a,b,\chi_{ 109 }(4,·)) \; at   a,b=\; a,b = e.g. 1,2