Properties

Label 109.8
Modulus 109109
Conductor 109109
Order 1212
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(109, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([7]))
 
pari: [g,chi] = znchar(Mod(8,109))
 

Basic properties

Modulus: 109109
Conductor: 109109
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 109.g

χ109(8,)\chi_{109}(8,\cdot) χ109(41,)\chi_{109}(41,\cdot) χ109(68,)\chi_{109}(68,\cdot) χ109(101,)\chi_{109}(101,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.25804264053054077850709.1

Values on generators

66e(712)e\left(\frac{7}{12}\right)

First values

aa 1-111223344556677889910101111
χ109(8,a) \chi_{ 109 }(8, a) 1-111iie(13)e\left(\frac{1}{3}\right)1-1e(13)e\left(\frac{1}{3}\right)e(712)e\left(\frac{7}{12}\right)e(13)e\left(\frac{1}{3}\right)i-ie(23)e\left(\frac{2}{3}\right)e(712)e\left(\frac{7}{12}\right)e(512)e\left(\frac{5}{12}\right)
sage: chi.jacobi_sum(n)
 
χ109(8,a)   \chi_{ 109 }(8,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ109(8,))   \tau_{ a }( \chi_{ 109 }(8,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ109(8,),χ109(n,))   J(\chi_{ 109 }(8,·),\chi_{ 109 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ109(8,))  K(a,b,\chi_{ 109 }(8,·)) \; at   a,b=\; a,b = e.g. 1,2