from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(111, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,14]))
pari: [g,chi] = znchar(Mod(49,111))
Basic properties
Modulus: | \(111\) | |
Conductor: | \(37\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(9\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{37}(12,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 111.k
\(\chi_{111}(7,\cdot)\) \(\chi_{111}(16,\cdot)\) \(\chi_{111}(34,\cdot)\) \(\chi_{111}(46,\cdot)\) \(\chi_{111}(49,\cdot)\) \(\chi_{111}(70,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | 9.9.3512479453921.1 |
Values on generators
\((38,76)\) → \((1,e\left(\frac{7}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 111 }(49, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)