Properties

Label 111.89
Modulus 111111
Conductor 111111
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(111, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,13]))
 
pari: [g,chi] = znchar(Mod(89,111))
 

Basic properties

Modulus: 111111
Conductor: 111111
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 111.q

χ111(2,)\chi_{111}(2,\cdot) χ111(5,)\chi_{111}(5,\cdot) χ111(17,)\chi_{111}(17,\cdot) χ111(20,)\chi_{111}(20,\cdot) χ111(32,)\chi_{111}(32,\cdot) χ111(35,)\chi_{111}(35,\cdot) χ111(50,)\chi_{111}(50,\cdot) χ111(56,)\chi_{111}(56,\cdot) χ111(59,)\chi_{111}(59,\cdot) χ111(89,)\chi_{111}(89,\cdot) χ111(92,)\chi_{111}(92,\cdot) χ111(98,)\chi_{111}(98,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Q(ζ111)+\Q(\zeta_{111})^+

Values on generators

(38,76)(38,76)(1,e(1336))(-1,e\left(\frac{13}{36}\right))

First values

aa 1-111224455778810101111131314141616
χ111(89,a) \chi_{ 111 }(89, a) 1111e(3136)e\left(\frac{31}{36}\right)e(1318)e\left(\frac{13}{18}\right)e(2936)e\left(\frac{29}{36}\right)e(59)e\left(\frac{5}{9}\right)e(712)e\left(\frac{7}{12}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(3536)e\left(\frac{35}{36}\right)e(512)e\left(\frac{5}{12}\right)e(49)e\left(\frac{4}{9}\right)
sage: chi.jacobi_sum(n)
 
χ111(89,a)   \chi_{ 111 }(89,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ111(89,))   \tau_{ a }( \chi_{ 111 }(89,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ111(89,),χ111(n,))   J(\chi_{ 111 }(89,·),\chi_{ 111 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ111(89,))  K(a,b,\chi_{ 111 }(89,·)) \; at   a,b=\; a,b = e.g. 1,2