Properties

Label 1125.43
Modulus $1125$
Conductor $225$
Order $60$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1125, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,57]))
 
pari: [g,chi] = znchar(Mod(43,1125))
 

Basic properties

Modulus: \(1125\)
Conductor: \(225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{225}(88,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1125.bb

\(\chi_{1125}(7,\cdot)\) \(\chi_{1125}(43,\cdot)\) \(\chi_{1125}(157,\cdot)\) \(\chi_{1125}(232,\cdot)\) \(\chi_{1125}(268,\cdot)\) \(\chi_{1125}(382,\cdot)\) \(\chi_{1125}(418,\cdot)\) \(\chi_{1125}(457,\cdot)\) \(\chi_{1125}(493,\cdot)\) \(\chi_{1125}(607,\cdot)\) \(\chi_{1125}(643,\cdot)\) \(\chi_{1125}(718,\cdot)\) \(\chi_{1125}(832,\cdot)\) \(\chi_{1125}(868,\cdot)\) \(\chi_{1125}(907,\cdot)\) \(\chi_{1125}(1093,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1001,127)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{19}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1125 }(43, a) \) \(-1\)\(1\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{1}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1125 }(43,a) \;\) at \(\;a = \) e.g. 2