Properties

Label 115.4
Modulus $115$
Conductor $115$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,4]))
 
pari: [g,chi] = znchar(Mod(4,115))
 

Basic properties

Modulus: \(115\)
Conductor: \(115\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 115.j

\(\chi_{115}(4,\cdot)\) \(\chi_{115}(9,\cdot)\) \(\chi_{115}(29,\cdot)\) \(\chi_{115}(39,\cdot)\) \(\chi_{115}(49,\cdot)\) \(\chi_{115}(54,\cdot)\) \(\chi_{115}(59,\cdot)\) \(\chi_{115}(64,\cdot)\) \(\chi_{115}(94,\cdot)\) \(\chi_{115}(104,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.83796671451884098775580820361328125.1

Values on generators

\((47,51)\) → \((-1,e\left(\frac{2}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 115 }(4, a) \) \(1\)\(1\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{1}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 115 }(4,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 115 }(4,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 115 }(4,·),\chi_{ 115 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 115 }(4,·)) \;\) at \(\; a,b = \) e.g. 1,2