Properties

Label 115.6
Modulus 115115
Conductor 2323
Order 1111
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18]))
 
pari: [g,chi] = znchar(Mod(6,115))
 

Basic properties

Modulus: 115115
Conductor: 2323
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1111
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ23(6,)\chi_{23}(6,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 115.g

χ115(6,)\chi_{115}(6,\cdot) χ115(16,)\chi_{115}(16,\cdot) χ115(26,)\chi_{115}(26,\cdot) χ115(31,)\chi_{115}(31,\cdot) χ115(36,)\chi_{115}(36,\cdot) χ115(41,)\chi_{115}(41,\cdot) χ115(71,)\chi_{115}(71,\cdot) χ115(81,)\chi_{115}(81,\cdot) χ115(96,)\chi_{115}(96,\cdot) χ115(101,)\chi_{115}(101,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ11)\Q(\zeta_{11})
Fixed field: Q(ζ23)+\Q(\zeta_{23})^+

Values on generators

(47,51)(47,51)(1,e(911))(1,e\left(\frac{9}{11}\right))

First values

aa 1-11122334466778899111112121313
χ115(6,a) \chi_{ 115 }(6, a) 1111e(711)e\left(\frac{7}{11}\right)e(111)e\left(\frac{1}{11}\right)e(311)e\left(\frac{3}{11}\right)e(811)e\left(\frac{8}{11}\right)e(611)e\left(\frac{6}{11}\right)e(1011)e\left(\frac{10}{11}\right)e(211)e\left(\frac{2}{11}\right)e(411)e\left(\frac{4}{11}\right)e(411)e\left(\frac{4}{11}\right)e(511)e\left(\frac{5}{11}\right)
sage: chi.jacobi_sum(n)
 
χ115(6,a)   \chi_{ 115 }(6,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ115(6,))   \tau_{ a }( \chi_{ 115 }(6,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ115(6,),χ115(n,))   J(\chi_{ 115 }(6,·),\chi_{ 115 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ115(6,))  K(a,b,\chi_{ 115 }(6,·)) \; at   a,b=\; a,b = e.g. 1,2