from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1152, base_ring=CyclotomicField(96))
M = H._module
chi = DirichletCharacter(H, M([0,45,32]))
chi.galois_orbit()
[g,chi] = znchar(Mod(13,1152))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1152\) | |
Conductor: | \(1152\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(96\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{96})$ |
Fixed field: | Number field defined by a degree 96 polynomial |
First 31 of 32 characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1152}(13,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{96}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{17}{96}\right)\) | \(e\left(\frac{67}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{95}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(61,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{13}{96}\right)\) | \(e\left(\frac{23}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{21}{32}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{67}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(85,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{96}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{35}{96}\right)\) | \(e\left(\frac{25}{96}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{27}{32}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{77}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1152}(133,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{96}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{31}{96}\right)\) | \(e\left(\frac{77}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{49}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1152}(157,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{96}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{96}\right)\) | \(e\left(\frac{31}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{11}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(205,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{96}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{1}{96}\right)\) | \(e\left(\frac{83}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{79}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(229,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{91}{96}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{23}{96}\right)\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1152}(277,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{96}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{19}{96}\right)\) | \(e\left(\frac{41}{96}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{61}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1152}(301,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{91}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{23}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(349,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{96}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{47}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{91}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(373,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{96}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{96}\right)\) | \(e\left(\frac{49}{96}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{5}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1152}(421,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{96}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{7}{96}\right)\) | \(e\left(\frac{5}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{73}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1152}(445,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{96}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{77}{96}\right)\) | \(e\left(\frac{55}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{21}{32}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{35}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(493,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{96}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{73}{96}\right)\) | \(e\left(\frac{11}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{7}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(517,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{96}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{95}{96}\right)\) | \(e\left(\frac{13}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{17}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1152}(565,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{96}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{91}{96}\right)\) | \(e\left(\frac{65}{96}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1152}(589,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{96}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{65}{96}\right)\) | \(e\left(\frac{19}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{47}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(637,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{96}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{61}{96}\right)\) | \(e\left(\frac{71}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{19}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(661,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{96}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{83}{96}\right)\) | \(e\left(\frac{73}{96}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{29}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1152}(709,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{96}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{79}{96}\right)\) | \(e\left(\frac{29}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{1}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1152}(733,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{96}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{53}{96}\right)\) | \(e\left(\frac{79}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{59}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(781,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{77}{96}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{49}{96}\right)\) | \(e\left(\frac{35}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{31}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(805,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{96}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{71}{96}\right)\) | \(e\left(\frac{37}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{41}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1152}(853,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{96}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{67}{96}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{27}{32}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{13}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1152}(877,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{96}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{41}{96}\right)\) | \(e\left(\frac{43}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{71}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(925,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{96}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{37}{96}\right)\) | \(e\left(\frac{95}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{43}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(949,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{96}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{59}{96}\right)\) | \(e\left(\frac{1}{96}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{53}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1152}(997,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{96}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{55}{96}\right)\) | \(e\left(\frac{53}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{25}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1152}(1021,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{96}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{29}{96}\right)\) | \(e\left(\frac{7}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{83}{96}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1152}(1069,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{96}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{25}{96}\right)\) | \(e\left(\frac{59}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{55}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1152}(1093,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{96}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{47}{96}\right)\) | \(e\left(\frac{61}{96}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{65}{96}\right)\) | \(e\left(\frac{11}{12}\right)\) |