sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1156, base_ring=CyclotomicField(34))
M = H._module
chi = DirichletCharacter(H, M([17,26]))
pari:[g,chi] = znchar(Mod(1055,1156))
Modulus: | 1156 | |
Conductor: | 1156 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 34 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1156(35,⋅)
χ1156(103,⋅)
χ1156(171,⋅)
χ1156(239,⋅)
χ1156(307,⋅)
χ1156(375,⋅)
χ1156(443,⋅)
χ1156(511,⋅)
χ1156(647,⋅)
χ1156(715,⋅)
χ1156(783,⋅)
χ1156(851,⋅)
χ1156(919,⋅)
χ1156(987,⋅)
χ1156(1055,⋅)
χ1156(1123,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(579,581) → (−1,e(1713))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 19 | 21 | 23 |
χ1156(1055,a) |
−1 | 1 | e(349) | e(172) | e(341) | e(179) | e(343) | e(1715) | e(3413) | e(347) | e(175) | e(341) |
sage:chi.jacobi_sum(n)