Properties

Label 1156.1055
Modulus $1156$
Conductor $1156$
Order $34$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(34))
 
M = H._module
 
chi = DirichletCharacter(H, M([17,26]))
 
pari: [g,chi] = znchar(Mod(1055,1156))
 

Basic properties

Modulus: \(1156\)
Conductor: \(1156\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(34\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1156.m

\(\chi_{1156}(35,\cdot)\) \(\chi_{1156}(103,\cdot)\) \(\chi_{1156}(171,\cdot)\) \(\chi_{1156}(239,\cdot)\) \(\chi_{1156}(307,\cdot)\) \(\chi_{1156}(375,\cdot)\) \(\chi_{1156}(443,\cdot)\) \(\chi_{1156}(511,\cdot)\) \(\chi_{1156}(647,\cdot)\) \(\chi_{1156}(715,\cdot)\) \(\chi_{1156}(783,\cdot)\) \(\chi_{1156}(851,\cdot)\) \(\chi_{1156}(919,\cdot)\) \(\chi_{1156}(987,\cdot)\) \(\chi_{1156}(1055,\cdot)\) \(\chi_{1156}(1123,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{17})\)
Fixed field: 34.0.96327617921918178221144313424108575958218071686770280802559537554108004555831047895384064.1

Values on generators

\((579,581)\) → \((-1,e\left(\frac{13}{17}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 1156 }(1055, a) \) \(-1\)\(1\)\(e\left(\frac{9}{34}\right)\)\(e\left(\frac{2}{17}\right)\)\(e\left(\frac{1}{34}\right)\)\(e\left(\frac{9}{17}\right)\)\(e\left(\frac{3}{34}\right)\)\(e\left(\frac{15}{17}\right)\)\(e\left(\frac{13}{34}\right)\)\(e\left(\frac{7}{34}\right)\)\(e\left(\frac{5}{17}\right)\)\(e\left(\frac{1}{34}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1156 }(1055,a) \;\) at \(\;a = \) e.g. 2