from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(116, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,9]))
pari: [g,chi] = znchar(Mod(71,116))
Basic properties
Modulus: | \(116\) | |
Conductor: | \(116\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(14\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 116.h
\(\chi_{116}(35,\cdot)\) \(\chi_{116}(51,\cdot)\) \(\chi_{116}(63,\cdot)\) \(\chi_{116}(67,\cdot)\) \(\chi_{116}(71,\cdot)\) \(\chi_{116}(91,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | 14.0.168110140833113738264576.1 |
Values on generators
\((59,89)\) → \((-1,e\left(\frac{9}{14}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 116 }(71, a) \) | \(-1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)