from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(116, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,3]))
chi.galois_orbit()
[g,chi] = znchar(Mod(35,116))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(116\) | |
Conductor: | \(116\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(14\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | 14.0.168110140833113738264576.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{116}(35,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) |
\(\chi_{116}(51,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) |
\(\chi_{116}(63,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) |
\(\chi_{116}(67,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) |
\(\chi_{116}(71,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) |
\(\chi_{116}(91,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) |