Properties

Label 117.14
Modulus 117117
Conductor 99
Order 66
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,0]))
 
pari: [g,chi] = znchar(Mod(14,117))
 

Basic properties

Modulus: 117117
Conductor: 99
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ9(5,)\chi_{9}(5,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 117.s

χ117(14,)\chi_{117}(14,\cdot) χ117(92,)\chi_{117}(92,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Q(ζ9)\Q(\zeta_{9})

Values on generators

(92,28)(92,28)(e(56),1)(e\left(\frac{5}{6}\right),1)

First values

aa 1-111224455778810101111141416161717
χ117(14,a) \chi_{ 117 }(14, a) 1-111e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)1-111e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)1-1
sage: chi.jacobi_sum(n)
 
χ117(14,a)   \chi_{ 117 }(14,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ117(14,))   \tau_{ a }( \chi_{ 117 }(14,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ117(14,),χ117(n,))   J(\chi_{ 117 }(14,·),\chi_{ 117 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ117(14,))  K(a,b,\chi_{ 117 }(14,·)) \; at   a,b=\; a,b = e.g. 1,2