Properties

Label 1176.989
Modulus 11761176
Conductor 11761176
Order 4242
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21,21,2]))
 
pari: [g,chi] = znchar(Mod(989,1176))
 

Basic properties

Modulus: 11761176
Conductor: 11761176
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1176.ck

χ1176(53,)\chi_{1176}(53,\cdot) χ1176(149,)\chi_{1176}(149,\cdot) χ1176(221,)\chi_{1176}(221,\cdot) χ1176(317,)\chi_{1176}(317,\cdot) χ1176(389,)\chi_{1176}(389,\cdot) χ1176(485,)\chi_{1176}(485,\cdot) χ1176(653,)\chi_{1176}(653,\cdot) χ1176(725,)\chi_{1176}(725,\cdot) χ1176(821,)\chi_{1176}(821,\cdot) χ1176(893,)\chi_{1176}(893,\cdot) χ1176(989,)\chi_{1176}(989,\cdot) χ1176(1061,)\chi_{1176}(1061,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(295,589,785,1081)(295,589,785,1081)(1,1,1,e(121))(1,-1,-1,e\left(\frac{1}{21}\right))

First values

aa 1-11155111113131717191923232525292931313737
χ1176(989,a) \chi_{ 1176 }(989, a) 1-111e(821)e\left(\frac{8}{21}\right)e(1921)e\left(\frac{19}{21}\right)e(114)e\left(\frac{1}{14}\right)e(2942)e\left(\frac{29}{42}\right)e(16)e\left(\frac{1}{6}\right)e(1342)e\left(\frac{13}{42}\right)e(1621)e\left(\frac{16}{21}\right)e(67)e\left(\frac{6}{7}\right)e(13)e\left(\frac{1}{3}\right)e(142)e\left(\frac{1}{42}\right)
sage: chi.jacobi_sum(n)
 
χ1176(989,a)   \chi_{ 1176 }(989,a) \; at   a=\;a = e.g. 2