Properties

Label 119.47
Modulus 119119
Conductor 119119
Order 1212
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(119, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,3]))
 
pari: [g,chi] = znchar(Mod(47,119))
 

Basic properties

Modulus: 119119
Conductor: 119119
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 119.m

χ119(38,)\chi_{119}(38,\cdot) χ119(47,)\chi_{119}(47,\cdot) χ119(89,)\chi_{119}(89,\cdot) χ119(115,)\chi_{119}(115,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.33498139941871322753.1

Values on generators

(52,71)(52,71)(e(56),i)(e\left(\frac{5}{6}\right),i)

First values

aa 1-11122334455668899101011111212
χ119(47,a) \chi_{ 119 }(47, a) 1-111e(16)e\left(\frac{1}{6}\right)e(112)e\left(\frac{1}{12}\right)e(13)e\left(\frac{1}{3}\right)e(512)e\left(\frac{5}{12}\right)ii1-1e(16)e\left(\frac{1}{6}\right)e(712)e\left(\frac{7}{12}\right)e(112)e\left(\frac{1}{12}\right)e(512)e\left(\frac{5}{12}\right)
sage: chi.jacobi_sum(n)
 
χ119(47,a)   \chi_{ 119 }(47,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ119(47,))   \tau_{ a }( \chi_{ 119 }(47,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ119(47,),χ119(n,))   J(\chi_{ 119 }(47,·),\chi_{ 119 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ119(47,))  K(a,b,\chi_{ 119 }(47,·)) \; at   a,b=\; a,b = e.g. 1,2