Properties

Label 1196.551
Modulus 11961196
Conductor 11961196
Order 44
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1196, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,3,2]))
 
Copy content pari:[g,chi] = znchar(Mod(551,1196))
 

Basic properties

Modulus: 11961196
Conductor: 11961196
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 44
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1196.k

χ1196(551,)\chi_{1196}(551,\cdot) χ1196(827,)\chi_{1196}(827,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.18595408.2

Values on generators

(599,93,833)(599,93,833)(1,i,1)(-1,-i,-1)

First values

aa 1-11133557799111115151717191921212525
χ1196(551,a) \chi_{ 1196 }(551, a) 1-1111-1iiii11iii-i11i-ii-i1-1
Copy content sage:chi.jacobi_sum(n)
 
χ1196(551,a)   \chi_{ 1196 }(551,a) \; at   a=\;a = e.g. 2