sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1196, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,3,2]))
pari:[g,chi] = znchar(Mod(551,1196))
Modulus: | 1196 | |
Conductor: | 1196 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 4 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1196(551,⋅)
χ1196(827,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(599,93,833) → (−1,−i,−1)
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 25 |
χ1196(551,a) |
−1 | 1 | −1 | i | i | 1 | i | −i | 1 | −i | −i | −1 |
sage:chi.jacobi_sum(n)