Properties

Label 1197.832
Modulus 11971197
Conductor 11971197
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1197, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,11]))
 
pari: [g,chi] = znchar(Mod(832,1197))
 

Basic properties

Modulus: 11971197
Conductor: 11971197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1197.gg

χ1197(13,)\chi_{1197}(13,\cdot) χ1197(97,)\chi_{1197}(97,\cdot) χ1197(223,)\chi_{1197}(223,\cdot) χ1197(580,)\chi_{1197}(580,\cdot) χ1197(832,)\chi_{1197}(832,\cdot) χ1197(1105,)\chi_{1197}(1105,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(533,514,1009)(533,514,1009)(e(13),1,e(1118))(e\left(\frac{1}{3}\right),-1,e\left(\frac{11}{18}\right))

First values

aa 1-11122445588101011111313161617172020
χ1197(832,a) \chi_{ 1197 }(832, a) 1111e(1718)e\left(\frac{17}{18}\right)e(89)e\left(\frac{8}{9}\right)e(1718)e\left(\frac{17}{18}\right)e(56)e\left(\frac{5}{6}\right)e(89)e\left(\frac{8}{9}\right)e(23)e\left(\frac{2}{3}\right)e(29)e\left(\frac{2}{9}\right)e(79)e\left(\frac{7}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ1197(832,a)   \chi_{ 1197 }(832,a) \; at   a=\;a = e.g. 2