⌂
→
Characters
→
Dirichlet
→
1197
→
bm
Citation
·
Feedback
·
Hide Menu
Dirichlet character orbit 1197.bm
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over
Q
\Q
Q
Elliptic curves over
Q
(
α
)
\Q(\alpha)
Q
(
α
)
Genus 2 curves over
Q
\Q
Q
Higher genus families
Abelian varieties over
F
q
\F_{q}
F
q
Belyi maps
Fields
Number fields
p
p
p
-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Properties
Label
1197.bm
Modulus
1197
1197
1
1
9
7
Conductor
1197
1197
1
1
9
7
Order
6
6
6
Real
no
Primitive
yes
Minimal
yes
Parity
odd
Related objects
Character group
Sato-Tate group
Value field
Downloads
Underlying data
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Dirichlet character labels
Dirichlet character orbit labels
Show commands:
Pari/GP
/
SageMath
sage:
from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([4,1,2])) chi.galois_orbit()
pari:
[g,chi] = znchar(Mod(178,1197)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus
:
1197
1197
1
1
9
7
Conductor
:
1197
1197
1
1
9
7
sage:
chi.conductor()
pari:
znconreyconductor(g,chi)
Order
:
6
6
6
sage:
chi.multiplicative_order()
pari:
charorder(g,chi)
Real
:
no
Primitive
:
yes
sage:
chi.is_primitive()
pari:
#znconreyconductor(g,chi)==1
Minimal
:
yes
Parity
:
odd
sage:
chi.is_odd()
pari:
zncharisodd(g,chi)
Related number fields
Field of values
:
Q
(
ζ
3
)
\mathbb{Q}(\zeta_3)
Q
(
ζ
3
)
Fixed field
:
6.0.14370591413367.7
Characters
in Galois orbit
Character
−
1
-1
−
1
1
1
1
2
2
2
4
4
4
5
5
5
8
8
8
10
10
1
0
11
11
1
1
13
13
1
3
16
16
1
6
17
17
1
7
20
20
2
0
χ
1197
(
178
,
⋅
)
\chi_{1197}(178,\cdot)
χ
1
1
9
7
(
1
7
8
,
⋅
)
−
1
-1
−
1
1
1
1
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
−
1
-1
−
1
1
1
1
e
(
5
6
)
e\left(\frac{5}{6}\right)
e
(
6
5
)
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
−
1
-1
−
1
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
−
1
-1
−
1
e
(
1
6
)
e\left(\frac{1}{6}\right)
e
(
6
1
)
χ
1197
(
733
,
⋅
)
\chi_{1197}(733,\cdot)
χ
1
1
9
7
(
7
3
3
,
⋅
)
−
1
-1
−
1
1
1
1
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
−
1
-1
−
1
1
1
1
e
(
1
6
)
e\left(\frac{1}{6}\right)
e
(
6
1
)
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
−
1
-1
−
1
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
−
1
-1
−
1
e
(
5
6
)
e\left(\frac{5}{6}\right)
e
(
6
5
)