Properties

Label 1200.289
Modulus $1200$
Conductor $25$
Order $10$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,3]))
 
pari: [g,chi] = znchar(Mod(289,1200))
 

Basic properties

Modulus: \(1200\)
Conductor: \(25\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25}(14,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1200.bs

\(\chi_{1200}(289,\cdot)\) \(\chi_{1200}(529,\cdot)\) \(\chi_{1200}(769,\cdot)\) \(\chi_{1200}(1009,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{25})^+\)

Values on generators

\((751,901,401,577)\) → \((1,1,1,e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1200 }(289, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1200 }(289,a) \;\) at \(\;a = \) e.g. 2