sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1200, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,5,10,3]))
pari:[g,chi] = znchar(Mod(533,1200))
Modulus: | 1200 | |
Conductor: | 1200 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 20 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1200(53,⋅)
χ1200(77,⋅)
χ1200(317,⋅)
χ1200(533,⋅)
χ1200(773,⋅)
χ1200(797,⋅)
χ1200(1013,⋅)
χ1200(1037,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(751,901,401,577) → (1,i,−1,e(203))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ1200(533,a) |
1 | 1 | i | e(203) | e(53) | e(209) | e(209) | e(2013) | e(2011) | e(51) | e(53) | e(53) |
sage:chi.jacobi_sum(n)