Properties

Label 1200.533
Modulus $1200$
Conductor $1200$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,10,3]))
 
pari: [g,chi] = znchar(Mod(533,1200))
 

Basic properties

Modulus: \(1200\)
Conductor: \(1200\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1200.cm

\(\chi_{1200}(53,\cdot)\) \(\chi_{1200}(77,\cdot)\) \(\chi_{1200}(317,\cdot)\) \(\chi_{1200}(533,\cdot)\) \(\chi_{1200}(773,\cdot)\) \(\chi_{1200}(797,\cdot)\) \(\chi_{1200}(1013,\cdot)\) \(\chi_{1200}(1037,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.6191736422400000000000000000000000000000000000.1

Values on generators

\((751,901,401,577)\) → \((1,i,-1,e\left(\frac{3}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1200 }(533, a) \) \(1\)\(1\)\(i\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1200 }(533,a) \;\) at \(\;a = \) e.g. 2