sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(121, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([1]))
pari:[g,chi] = znchar(Mod(2,121))
Modulus: | 121 | |
Conductor: | 121 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 110 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ121(2,⋅)
χ121(6,⋅)
χ121(7,⋅)
χ121(8,⋅)
χ121(13,⋅)
χ121(17,⋅)
χ121(18,⋅)
χ121(19,⋅)
χ121(24,⋅)
χ121(28,⋅)
χ121(29,⋅)
χ121(30,⋅)
χ121(35,⋅)
χ121(39,⋅)
χ121(41,⋅)
χ121(46,⋅)
χ121(50,⋅)
χ121(51,⋅)
χ121(52,⋅)
χ121(57,⋅)
χ121(61,⋅)
χ121(62,⋅)
χ121(63,⋅)
χ121(68,⋅)
χ121(72,⋅)
χ121(73,⋅)
χ121(74,⋅)
χ121(79,⋅)
χ121(83,⋅)
χ121(84,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(1101)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ121(2,a) |
−1 | 1 | e(1101) | e(54) | e(551) | e(5537) | e(11089) | e(1107) | e(1103) | e(53) | e(2215) | e(119) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)