sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1215, base_ring=CyclotomicField(162))
M = H._module
chi = DirichletCharacter(H, M([55,81]))
pari:[g,chi] = znchar(Mod(164,1215))
Modulus: | 1215 | |
Conductor: | 1215 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 162 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1215(14,⋅)
χ1215(29,⋅)
χ1215(59,⋅)
χ1215(74,⋅)
χ1215(104,⋅)
χ1215(119,⋅)
χ1215(149,⋅)
χ1215(164,⋅)
χ1215(194,⋅)
χ1215(209,⋅)
χ1215(239,⋅)
χ1215(254,⋅)
χ1215(284,⋅)
χ1215(299,⋅)
χ1215(329,⋅)
χ1215(344,⋅)
χ1215(374,⋅)
χ1215(389,⋅)
χ1215(419,⋅)
χ1215(434,⋅)
χ1215(464,⋅)
χ1215(479,⋅)
χ1215(509,⋅)
χ1215(524,⋅)
χ1215(554,⋅)
χ1215(569,⋅)
χ1215(599,⋅)
χ1215(614,⋅)
χ1215(644,⋅)
χ1215(659,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(731,487) → (e(16255),−1)
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ1215(164,a) |
−1 | 1 | e(8168) | e(8155) | e(16243) | e(2714) | e(16213) | e(16235) | e(16217) | e(8129) | e(2719) | e(2726) |
sage:chi.jacobi_sum(n)