Properties

Label 1215.164
Modulus 12151215
Conductor 12151215
Order 162162
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1215, base_ring=CyclotomicField(162)) M = H._module chi = DirichletCharacter(H, M([55,81]))
 
Copy content pari:[g,chi] = znchar(Mod(164,1215))
 

Basic properties

Modulus: 12151215
Conductor: 12151215
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 162162
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1215.bb

χ1215(14,)\chi_{1215}(14,\cdot) χ1215(29,)\chi_{1215}(29,\cdot) χ1215(59,)\chi_{1215}(59,\cdot) χ1215(74,)\chi_{1215}(74,\cdot) χ1215(104,)\chi_{1215}(104,\cdot) χ1215(119,)\chi_{1215}(119,\cdot) χ1215(149,)\chi_{1215}(149,\cdot) χ1215(164,)\chi_{1215}(164,\cdot) χ1215(194,)\chi_{1215}(194,\cdot) χ1215(209,)\chi_{1215}(209,\cdot) χ1215(239,)\chi_{1215}(239,\cdot) χ1215(254,)\chi_{1215}(254,\cdot) χ1215(284,)\chi_{1215}(284,\cdot) χ1215(299,)\chi_{1215}(299,\cdot) χ1215(329,)\chi_{1215}(329,\cdot) χ1215(344,)\chi_{1215}(344,\cdot) χ1215(374,)\chi_{1215}(374,\cdot) χ1215(389,)\chi_{1215}(389,\cdot) χ1215(419,)\chi_{1215}(419,\cdot) χ1215(434,)\chi_{1215}(434,\cdot) χ1215(464,)\chi_{1215}(464,\cdot) χ1215(479,)\chi_{1215}(479,\cdot) χ1215(509,)\chi_{1215}(509,\cdot) χ1215(524,)\chi_{1215}(524,\cdot) χ1215(554,)\chi_{1215}(554,\cdot) χ1215(569,)\chi_{1215}(569,\cdot) χ1215(599,)\chi_{1215}(599,\cdot) χ1215(614,)\chi_{1215}(614,\cdot) χ1215(644,)\chi_{1215}(644,\cdot) χ1215(659,)\chi_{1215}(659,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ81)\Q(\zeta_{81})
Fixed field: Number field defined by a degree 162 polynomial (not computed)

Values on generators

(731,487)(731,487)(e(55162),1)(e\left(\frac{55}{162}\right),-1)

First values

aa 1-11122447788111113131414161617171919
χ1215(164,a) \chi_{ 1215 }(164, a) 1-111e(6881)e\left(\frac{68}{81}\right)e(5581)e\left(\frac{55}{81}\right)e(43162)e\left(\frac{43}{162}\right)e(1427)e\left(\frac{14}{27}\right)e(13162)e\left(\frac{13}{162}\right)e(35162)e\left(\frac{35}{162}\right)e(17162)e\left(\frac{17}{162}\right)e(2981)e\left(\frac{29}{81}\right)e(1927)e\left(\frac{19}{27}\right)e(2627)e\left(\frac{26}{27}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1215(164,a)   \chi_{ 1215 }(164,a) \; at   a=\;a = e.g. 2