from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1215, base_ring=CyclotomicField(162))
M = H._module
chi = DirichletCharacter(H, M([91,0]))
pari: [g,chi] = znchar(Mod(191,1215))
χ1215(11,⋅)
χ1215(41,⋅)
χ1215(56,⋅)
χ1215(86,⋅)
χ1215(101,⋅)
χ1215(131,⋅)
χ1215(146,⋅)
χ1215(176,⋅)
χ1215(191,⋅)
χ1215(221,⋅)
χ1215(236,⋅)
χ1215(266,⋅)
χ1215(281,⋅)
χ1215(311,⋅)
χ1215(326,⋅)
χ1215(356,⋅)
χ1215(371,⋅)
χ1215(401,⋅)
χ1215(416,⋅)
χ1215(446,⋅)
χ1215(461,⋅)
χ1215(491,⋅)
χ1215(506,⋅)
χ1215(536,⋅)
χ1215(551,⋅)
χ1215(581,⋅)
χ1215(596,⋅)
χ1215(626,⋅)
χ1215(641,⋅)
χ1215(671,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(731,487) → (e(16291),1)
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ1215(191,a) |
−1 | 1 | e(16291) | e(8110) | e(8126) | e(5437) | e(162157) | e(8140) | e(162143) | e(8120) | e(5429) | e(2717) |