Properties

Label 1216.577
Modulus 12161216
Conductor 1919
Order 33
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,2]))
 
pari: [g,chi] = znchar(Mod(577,1216))
 

Basic properties

Modulus: 12161216
Conductor: 1919
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ19(7,)\chi_{19}(7,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1216.i

χ1216(577,)\chi_{1216}(577,\cdot) χ1216(961,)\chi_{1216}(961,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 3.3.361.1

Values on generators

(191,837,705)(191,837,705)(1,1,e(13))(1,1,e\left(\frac{1}{3}\right))

First values

aa 1-11133557799111113131515171721212323
χ1216(577,a) \chi_{ 1216 }(577, a) 1111e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(23)e\left(\frac{2}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ1216(577,a)   \chi_{ 1216 }(577,a) \; at   a=\;a = e.g. 2