sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1224, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,0,16,9]))
pari:[g,chi] = znchar(Mod(1183,1224))
χ1224(7,⋅)
χ1224(31,⋅)
χ1224(79,⋅)
χ1224(175,⋅)
χ1224(295,⋅)
χ1224(367,⋅)
χ1224(439,⋅)
χ1224(583,⋅)
χ1224(607,⋅)
χ1224(751,⋅)
χ1224(823,⋅)
χ1224(895,⋅)
χ1224(1015,⋅)
χ1224(1111,⋅)
χ1224(1159,⋅)
χ1224(1183,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(919,613,137,649) → (−1,1,e(31),e(163))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 19 | 23 | 25 | 29 | 31 | 35 |
χ1224(1183,a) |
1 | 1 | e(4829) | e(4843) | e(487) | e(125) | e(81) | e(4847) | e(245) | e(4837) | e(4841) | −1 |
sage:chi.jacobi_sum(n)