Properties

Label 1224.359
Modulus 12241224
Conductor 204204
Order 88
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,0,4,7]))
 
pari: [g,chi] = znchar(Mod(359,1224))
 

Basic properties

Modulus: 12241224
Conductor: 204204
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ204(155,)\chi_{204}(155,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1224.br

χ1224(287,)\chi_{1224}(287,\cdot) χ1224(359,)\chi_{1224}(359,\cdot) χ1224(791,)\chi_{1224}(791,\cdot) χ1224(1079,)\chi_{1224}(1079,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.8508782723328.1

Values on generators

(919,613,137,649)(919,613,137,649)(1,1,1,e(78))(-1,1,-1,e\left(\frac{7}{8}\right))

First values

aa 1-111557711111313191923232525292931313535
χ1224(359,a) \chi_{ 1224 }(359, a) 1111e(78)e\left(\frac{7}{8}\right)e(18)e\left(\frac{1}{8}\right)e(18)e\left(\frac{1}{8}\right)1-1i-ie(18)e\left(\frac{1}{8}\right)i-ie(78)e\left(\frac{7}{8}\right)e(38)e\left(\frac{3}{8}\right)11
sage: chi.jacobi_sum(n)
 
χ1224(359,a)   \chi_{ 1224 }(359,a) \; at   a=\;a = e.g. 2