Properties

Label 1224.647
Modulus 12241224
Conductor 1212
Order 22
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,1,0]))
 
pari: [g,chi] = znchar(Mod(647,1224))
 

Basic properties

Modulus: 12241224
Conductor: 1212
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ12(11,)\chi_{12}(11,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1224.e

χ1224(647,)\chi_{1224}(647,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(3)\Q(\sqrt{3})

Values on generators

(919,613,137,649)(919,613,137,649)(1,1,1,1)(-1,1,-1,1)

First values

aa 1-111557711111313191923232525292931313535
χ1224(647,a) \chi_{ 1224 }(647, a) 11111-11-111111-111111-11-111
sage: chi.jacobi_sum(n)
 
χ1224(647,a)   \chi_{ 1224 }(647,a) \; at   a=\;a = e.g. 2