from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,26]))
chi.galois_orbit()
[g,chi] = znchar(Mod(51,1225))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1225\) | |
Conductor: | \(49\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(21\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 49.g | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 21 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1225}(51,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{1225}(151,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{1225}(326,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{19}{21}\right)\) |
\(\chi_{1225}(401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{1225}(501,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) |
\(\chi_{1225}(576,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) |
\(\chi_{1225}(676,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{1225}(751,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{1225}(926,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) |
\(\chi_{1225}(1026,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{10}{21}\right)\) |
\(\chi_{1225}(1101,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{1225}(1201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{21}\right)\) |