Properties

Label 1225.x
Modulus $1225$
Conductor $49$
Order $21$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,26]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(51,1225))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1225\)
Conductor: \(49\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 49.g
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(8\) \(9\) \(11\) \(12\) \(13\) \(16\)
\(\chi_{1225}(51,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{1225}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{1225}(326,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{1225}(401,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{1225}(501,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{1225}(576,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{1225}(676,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{1225}(751,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{1225}(926,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{1225}(1026,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{1225}(1101,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{1225}(1201,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{13}{21}\right)\)