Properties

Label 1232.1081
Modulus $1232$
Conductor $616$
Order $30$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,5,24]))
 
pari: [g,chi] = znchar(Mod(1081,1232))
 

Basic properties

Modulus: \(1232\)
Conductor: \(616\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{616}(157,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1232.dh

\(\chi_{1232}(185,\cdot)\) \(\chi_{1232}(201,\cdot)\) \(\chi_{1232}(313,\cdot)\) \(\chi_{1232}(521,\cdot)\) \(\chi_{1232}(537,\cdot)\) \(\chi_{1232}(873,\cdot)\) \(\chi_{1232}(1081,\cdot)\) \(\chi_{1232}(1193,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((463,309,353,673)\) → \((1,-1,e\left(\frac{1}{6}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 1232 }(1081, a) \) \(-1\)\(1\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1232 }(1081,a) \;\) at \(\;a = \) e.g. 2