from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1232, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,15,5,24]))
pari: [g,chi] = znchar(Mod(1081,1232))
Basic properties
Modulus: | \(1232\) | |
Conductor: | \(616\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{616}(157,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1232.dh
\(\chi_{1232}(185,\cdot)\) \(\chi_{1232}(201,\cdot)\) \(\chi_{1232}(313,\cdot)\) \(\chi_{1232}(521,\cdot)\) \(\chi_{1232}(537,\cdot)\) \(\chi_{1232}(873,\cdot)\) \(\chi_{1232}(1081,\cdot)\) \(\chi_{1232}(1193,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 30 polynomial |
Values on generators
\((463,309,353,673)\) → \((1,-1,e\left(\frac{1}{6}\right),e\left(\frac{4}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 1232 }(1081, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) |
sage: chi.jacobi_sum(n)