Properties

Label 1232.19
Modulus $1232$
Conductor $1232$
Order $60$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,45,50,18]))
 
pari: [g,chi] = znchar(Mod(19,1232))
 

Basic properties

Modulus: \(1232\)
Conductor: \(1232\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1232.dr

\(\chi_{1232}(19,\cdot)\) \(\chi_{1232}(171,\cdot)\) \(\chi_{1232}(227,\cdot)\) \(\chi_{1232}(283,\cdot)\) \(\chi_{1232}(299,\cdot)\) \(\chi_{1232}(523,\cdot)\) \(\chi_{1232}(563,\cdot)\) \(\chi_{1232}(579,\cdot)\) \(\chi_{1232}(635,\cdot)\) \(\chi_{1232}(787,\cdot)\) \(\chi_{1232}(843,\cdot)\) \(\chi_{1232}(899,\cdot)\) \(\chi_{1232}(915,\cdot)\) \(\chi_{1232}(1139,\cdot)\) \(\chi_{1232}(1179,\cdot)\) \(\chi_{1232}(1195,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((463,309,353,673)\) → \((-1,-i,e\left(\frac{5}{6}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 1232 }(19, a) \) \(-1\)\(1\)\(e\left(\frac{59}{60}\right)\)\(e\left(\frac{7}{60}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{49}{60}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{19}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1232 }(19,a) \;\) at \(\;a = \) e.g. 2