sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1232, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,45,50,18]))
pari:[g,chi] = znchar(Mod(19,1232))
Modulus: | 1232 | |
Conductor: | 1232 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1232(19,⋅)
χ1232(171,⋅)
χ1232(227,⋅)
χ1232(283,⋅)
χ1232(299,⋅)
χ1232(523,⋅)
χ1232(563,⋅)
χ1232(579,⋅)
χ1232(635,⋅)
χ1232(787,⋅)
χ1232(843,⋅)
χ1232(899,⋅)
χ1232(915,⋅)
χ1232(1139,⋅)
χ1232(1179,⋅)
χ1232(1195,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(463,309,353,673) → (−1,−i,e(65),e(103))
a |
−1 | 1 | 3 | 5 | 9 | 13 | 15 | 17 | 19 | 23 | 25 | 27 |
χ1232(19,a) |
−1 | 1 | e(6059) | e(607) | e(3029) | e(201) | e(101) | e(158) | e(6049) | e(32) | e(307) | e(2019) |
sage:chi.jacobi_sum(n)