from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1232, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,15,20,6]))
pari: [g,chi] = znchar(Mod(1003,1232))
Basic properties
Modulus: | \(1232\) | |
Conductor: | \(1232\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1232.do
\(\chi_{1232}(51,\cdot)\) \(\chi_{1232}(107,\cdot)\) \(\chi_{1232}(123,\cdot)\) \(\chi_{1232}(347,\cdot)\) \(\chi_{1232}(387,\cdot)\) \(\chi_{1232}(403,\cdot)\) \(\chi_{1232}(459,\cdot)\) \(\chi_{1232}(611,\cdot)\) \(\chi_{1232}(667,\cdot)\) \(\chi_{1232}(723,\cdot)\) \(\chi_{1232}(739,\cdot)\) \(\chi_{1232}(963,\cdot)\) \(\chi_{1232}(1003,\cdot)\) \(\chi_{1232}(1019,\cdot)\) \(\chi_{1232}(1075,\cdot)\) \(\chi_{1232}(1227,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((463,309,353,673)\) → \((-1,i,e\left(\frac{1}{3}\right),e\left(\frac{1}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 1232 }(1003, a) \) | \(1\) | \(1\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{3}{20}\right)\) |
sage: chi.jacobi_sum(n)