Properties

Label 1254.125
Modulus $1254$
Conductor $627$
Order $30$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,6,20]))
 
pari: [g,chi] = znchar(Mod(125,1254))
 

Basic properties

Modulus: \(1254\)
Conductor: \(627\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{627}(125,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1254.bi

\(\chi_{1254}(125,\cdot)\) \(\chi_{1254}(311,\cdot)\) \(\chi_{1254}(467,\cdot)\) \(\chi_{1254}(581,\cdot)\) \(\chi_{1254}(653,\cdot)\) \(\chi_{1254}(995,\cdot)\) \(\chi_{1254}(1037,\cdot)\) \(\chi_{1254}(1109,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((419,343,1123)\) → \((-1,e\left(\frac{1}{5}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 1254 }(125, a) \) \(-1\)\(1\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{2}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1254 }(125,a) \;\) at \(\;a = \) e.g. 2