from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1254, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,3,25]))
pari: [g,chi] = znchar(Mod(145,1254))
Basic properties
Modulus: | \(1254\) | |
Conductor: | \(209\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{209}(145,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1254.bn
\(\chi_{1254}(145,\cdot)\) \(\chi_{1254}(217,\cdot)\) \(\chi_{1254}(259,\cdot)\) \(\chi_{1254}(601,\cdot)\) \(\chi_{1254}(673,\cdot)\) \(\chi_{1254}(787,\cdot)\) \(\chi_{1254}(943,\cdot)\) \(\chi_{1254}(1129,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 30.30.1220232317838205647399552173000517992590495082743137882605129.1 |
Values on generators
\((419,343,1123)\) → \((1,e\left(\frac{1}{10}\right),e\left(\frac{5}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) | \(37\) |
\( \chi_{ 1254 }(145, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) |
sage: chi.jacobi_sum(n)