Properties

Label 1254.41
Modulus $1254$
Conductor $627$
Order $90$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([45,27,65]))
 
pari: [g,chi] = znchar(Mod(41,1254))
 

Basic properties

Modulus: \(1254\)
Conductor: \(627\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{627}(41,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1254.bq

\(\chi_{1254}(29,\cdot)\) \(\chi_{1254}(41,\cdot)\) \(\chi_{1254}(167,\cdot)\) \(\chi_{1254}(173,\cdot)\) \(\chi_{1254}(281,\cdot)\) \(\chi_{1254}(299,\cdot)\) \(\chi_{1254}(371,\cdot)\) \(\chi_{1254}(413,\cdot)\) \(\chi_{1254}(431,\cdot)\) \(\chi_{1254}(497,\cdot)\) \(\chi_{1254}(545,\cdot)\) \(\chi_{1254}(611,\cdot)\) \(\chi_{1254}(623,\cdot)\) \(\chi_{1254}(629,\cdot)\) \(\chi_{1254}(743,\cdot)\) \(\chi_{1254}(755,\cdot)\) \(\chi_{1254}(827,\cdot)\) \(\chi_{1254}(887,\cdot)\) \(\chi_{1254}(941,\cdot)\) \(\chi_{1254}(953,\cdot)\) \(\chi_{1254}(965,\cdot)\) \(\chi_{1254}(1085,\cdot)\) \(\chi_{1254}(1097,\cdot)\) \(\chi_{1254}(1229,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

\((419,343,1123)\) → \((-1,e\left(\frac{3}{10}\right),e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 1254 }(41, a) \) \(-1\)\(1\)\(e\left(\frac{23}{90}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{41}{45}\right)\)\(e\left(\frac{19}{45}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{23}{45}\right)\)\(e\left(\frac{79}{90}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{31}{45}\right)\)\(e\left(\frac{1}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1254 }(41,a) \;\) at \(\;a = \) e.g. 2