Properties

Label 1254.61
Modulus $1254$
Conductor $209$
Order $90$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,81,10]))
 
pari: [g,chi] = znchar(Mod(61,1254))
 

Basic properties

Modulus: \(1254\)
Conductor: \(209\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{209}(61,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1254.bs

\(\chi_{1254}(61,\cdot)\) \(\chi_{1254}(73,\cdot)\) \(\chi_{1254}(85,\cdot)\) \(\chi_{1254}(139,\cdot)\) \(\chi_{1254}(271,\cdot)\) \(\chi_{1254}(283,\cdot)\) \(\chi_{1254}(403,\cdot)\) \(\chi_{1254}(415,\cdot)\) \(\chi_{1254}(481,\cdot)\) \(\chi_{1254}(541,\cdot)\) \(\chi_{1254}(613,\cdot)\) \(\chi_{1254}(655,\cdot)\) \(\chi_{1254}(739,\cdot)\) \(\chi_{1254}(745,\cdot)\) \(\chi_{1254}(853,\cdot)\) \(\chi_{1254}(871,\cdot)\) \(\chi_{1254}(937,\cdot)\) \(\chi_{1254}(985,\cdot)\) \(\chi_{1254}(997,\cdot)\) \(\chi_{1254}(1051,\cdot)\) \(\chi_{1254}(1069,\cdot)\) \(\chi_{1254}(1183,\cdot)\) \(\chi_{1254}(1195,\cdot)\) \(\chi_{1254}(1201,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

\((419,343,1123)\) → \((1,e\left(\frac{9}{10}\right),e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 1254 }(61, a) \) \(-1\)\(1\)\(e\left(\frac{17}{45}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{41}{90}\right)\)\(e\left(\frac{19}{90}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{34}{45}\right)\)\(e\left(\frac{17}{90}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{31}{90}\right)\)\(e\left(\frac{4}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1254 }(61,a) \;\) at \(\;a = \) e.g. 2