sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1254, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([0,63,5]))
pari:[g,chi] = znchar(Mod(667,1254))
χ1254(13,⋅)
χ1254(79,⋅)
χ1254(127,⋅)
χ1254(193,⋅)
χ1254(205,⋅)
χ1254(211,⋅)
χ1254(325,⋅)
χ1254(337,⋅)
χ1254(409,⋅)
χ1254(469,⋅)
χ1254(523,⋅)
χ1254(535,⋅)
χ1254(547,⋅)
χ1254(667,⋅)
χ1254(679,⋅)
χ1254(811,⋅)
χ1254(865,⋅)
χ1254(877,⋅)
χ1254(1003,⋅)
χ1254(1009,⋅)
χ1254(1117,⋅)
χ1254(1135,⋅)
χ1254(1207,⋅)
χ1254(1249,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(419,343,1123) → (1,e(107),e(181))
a |
−1 | 1 | 5 | 7 | 13 | 17 | 23 | 25 | 29 | 31 | 35 | 37 |
χ1254(667,a) |
1 | 1 | e(4531) | e(307) | e(4544) | e(9077) | e(91) | e(4517) | e(4538) | e(301) | e(9083) | e(109) |
sage:chi.jacobi_sum(n)