Properties

Label 1254.667
Modulus $1254$
Conductor $209$
Order $90$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,63,5]))
 
pari: [g,chi] = znchar(Mod(667,1254))
 

Basic properties

Modulus: \(1254\)
Conductor: \(209\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{209}(40,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1254.bp

\(\chi_{1254}(13,\cdot)\) \(\chi_{1254}(79,\cdot)\) \(\chi_{1254}(127,\cdot)\) \(\chi_{1254}(193,\cdot)\) \(\chi_{1254}(205,\cdot)\) \(\chi_{1254}(211,\cdot)\) \(\chi_{1254}(325,\cdot)\) \(\chi_{1254}(337,\cdot)\) \(\chi_{1254}(409,\cdot)\) \(\chi_{1254}(469,\cdot)\) \(\chi_{1254}(523,\cdot)\) \(\chi_{1254}(535,\cdot)\) \(\chi_{1254}(547,\cdot)\) \(\chi_{1254}(667,\cdot)\) \(\chi_{1254}(679,\cdot)\) \(\chi_{1254}(811,\cdot)\) \(\chi_{1254}(865,\cdot)\) \(\chi_{1254}(877,\cdot)\) \(\chi_{1254}(1003,\cdot)\) \(\chi_{1254}(1009,\cdot)\) \(\chi_{1254}(1117,\cdot)\) \(\chi_{1254}(1135,\cdot)\) \(\chi_{1254}(1207,\cdot)\) \(\chi_{1254}(1249,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

\((419,343,1123)\) → \((1,e\left(\frac{7}{10}\right),e\left(\frac{1}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 1254 }(667, a) \) \(1\)\(1\)\(e\left(\frac{31}{45}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{44}{45}\right)\)\(e\left(\frac{77}{90}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{17}{45}\right)\)\(e\left(\frac{38}{45}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{83}{90}\right)\)\(e\left(\frac{9}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1254 }(667,a) \;\) at \(\;a = \) e.g. 2