Properties

Label 1260.583
Modulus $1260$
Conductor $1260$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,8,9,4]))
 
pari: [g,chi] = znchar(Mod(583,1260))
 

Basic properties

Modulus: \(1260\)
Conductor: \(1260\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1260.dl

\(\chi_{1260}(67,\cdot)\) \(\chi_{1260}(583,\cdot)\) \(\chi_{1260}(823,\cdot)\) \(\chi_{1260}(1087,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.1985246242140168000000000.2

Values on generators

\((631,281,757,1081)\) → \((-1,e\left(\frac{2}{3}\right),-i,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1260 }(583, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1260 }(583,a) \;\) at \(\;a = \) e.g. 2