Properties

Label 1260.949
Modulus $1260$
Conductor $315$
Order $6$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2,3,4]))
 
pari: [g,chi] = znchar(Mod(949,1260))
 

Basic properties

Modulus: \(1260\)
Conductor: \(315\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{315}(4,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1260.di

\(\chi_{1260}(709,\cdot)\) \(\chi_{1260}(949,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.6.1969120125.2

Values on generators

\((631,281,757,1081)\) → \((1,e\left(\frac{1}{3}\right),-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1260 }(949, a) \) \(1\)\(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1260 }(949,a) \;\) at \(\;a = \) e.g. 2