Properties

Label 128.5
Modulus 128128
Conductor 128128
Order 3232
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(128, base_ring=CyclotomicField(32))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1]))
 
pari: [g,chi] = znchar(Mod(5,128))
 

Basic properties

Modulus: 128128
Conductor: 128128
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3232
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 128.k

χ128(5,)\chi_{128}(5,\cdot) χ128(13,)\chi_{128}(13,\cdot) χ128(21,)\chi_{128}(21,\cdot) χ128(29,)\chi_{128}(29,\cdot) χ128(37,)\chi_{128}(37,\cdot) χ128(45,)\chi_{128}(45,\cdot) χ128(53,)\chi_{128}(53,\cdot) χ128(61,)\chi_{128}(61,\cdot) χ128(69,)\chi_{128}(69,\cdot) χ128(77,)\chi_{128}(77,\cdot) χ128(85,)\chi_{128}(85,\cdot) χ128(93,)\chi_{128}(93,\cdot) χ128(101,)\chi_{128}(101,\cdot) χ128(109,)\chi_{128}(109,\cdot) χ128(117,)\chi_{128}(117,\cdot) χ128(125,)\chi_{128}(125,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ32)\Q(\zeta_{32})
Fixed field: Q(ζ128)+\Q(\zeta_{128})^+

Values on generators

(127,5)(127,5)(1,e(132))(1,e\left(\frac{1}{32}\right))

First values

aa 1-11133557799111113131515171719192121
χ128(5,a) \chi_{ 128 }(5, a) 1111e(332)e\left(\frac{3}{32}\right)e(132)e\left(\frac{1}{32}\right)e(516)e\left(\frac{5}{16}\right)e(316)e\left(\frac{3}{16}\right)e(2132)e\left(\frac{21}{32}\right)e(1532)e\left(\frac{15}{32}\right)e(18)e\left(\frac{1}{8}\right)e(78)e\left(\frac{7}{8}\right)e(2332)e\left(\frac{23}{32}\right)e(1332)e\left(\frac{13}{32}\right)
sage: chi.jacobi_sum(n)
 
χ128(5,a)   \chi_{ 128 }(5,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ128(5,))   \tau_{ a }( \chi_{ 128 }(5,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ128(5,),χ128(n,))   J(\chi_{ 128 }(5,·),\chi_{ 128 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ128(5,))  K(a,b,\chi_{ 128 }(5,·)) \; at   a,b=\; a,b = e.g. 1,2