from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(12825, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([70,81,160]))
pari: [g,chi] = znchar(Mod(10037,12825))
χ12825(23,⋅)
χ12825(92,⋅)
χ12825(758,⋅)
χ12825(803,⋅)
χ12825(842,⋅)
χ12825(1472,⋅)
χ12825(1562,⋅)
χ12825(2297,⋅)
χ12825(2342,⋅)
χ12825(2498,⋅)
χ12825(2588,⋅)
χ12825(3323,⋅)
χ12825(3683,⋅)
χ12825(4037,⋅)
χ12825(4127,⋅)
χ12825(4433,⋅)
χ12825(4862,⋅)
χ12825(5063,⋅)
χ12825(5153,⋅)
χ12825(5222,⋅)
χ12825(5888,⋅)
χ12825(5933,⋅)
χ12825(5972,⋅)
χ12825(6248,⋅)
χ12825(6602,⋅)
χ12825(6692,⋅)
χ12825(6998,⋅)
χ12825(7427,⋅)
χ12825(7472,⋅)
χ12825(7628,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(10451,1027,1351) → (e(187),e(209),e(98))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ12825(10037,a) |
1 | 1 | e(180131) | e(9041) | e(3629) | e(6011) | e(9083) | e(18019) | e(158) | e(4541) | e(180103) | e(2013) |