Properties

Label 12825.10037
Modulus 1282512825
Conductor 1282512825
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(12825, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([70,81,160]))
 
pari: [g,chi] = znchar(Mod(10037,12825))
 

Basic properties

Modulus: 1282512825
Conductor: 1282512825
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 12825.pe

χ12825(23,)\chi_{12825}(23,\cdot) χ12825(92,)\chi_{12825}(92,\cdot) χ12825(758,)\chi_{12825}(758,\cdot) χ12825(803,)\chi_{12825}(803,\cdot) χ12825(842,)\chi_{12825}(842,\cdot) χ12825(1472,)\chi_{12825}(1472,\cdot) χ12825(1562,)\chi_{12825}(1562,\cdot) χ12825(2297,)\chi_{12825}(2297,\cdot) χ12825(2342,)\chi_{12825}(2342,\cdot) χ12825(2498,)\chi_{12825}(2498,\cdot) χ12825(2588,)\chi_{12825}(2588,\cdot) χ12825(3323,)\chi_{12825}(3323,\cdot) χ12825(3683,)\chi_{12825}(3683,\cdot) χ12825(4037,)\chi_{12825}(4037,\cdot) χ12825(4127,)\chi_{12825}(4127,\cdot) χ12825(4433,)\chi_{12825}(4433,\cdot) χ12825(4862,)\chi_{12825}(4862,\cdot) χ12825(5063,)\chi_{12825}(5063,\cdot) χ12825(5153,)\chi_{12825}(5153,\cdot) χ12825(5222,)\chi_{12825}(5222,\cdot) χ12825(5888,)\chi_{12825}(5888,\cdot) χ12825(5933,)\chi_{12825}(5933,\cdot) χ12825(5972,)\chi_{12825}(5972,\cdot) χ12825(6248,)\chi_{12825}(6248,\cdot) χ12825(6602,)\chi_{12825}(6602,\cdot) χ12825(6692,)\chi_{12825}(6692,\cdot) χ12825(6998,)\chi_{12825}(6998,\cdot) χ12825(7427,)\chi_{12825}(7427,\cdot) χ12825(7472,)\chi_{12825}(7472,\cdot) χ12825(7628,)\chi_{12825}(7628,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(10451,1027,1351)(10451,1027,1351)(e(718),e(920),e(89))(e\left(\frac{7}{18}\right),e\left(\frac{9}{20}\right),e\left(\frac{8}{9}\right))

First values

aa 1-11122447788111113131414161617172222
χ12825(10037,a) \chi_{ 12825 }(10037, a) 1111e(131180)e\left(\frac{131}{180}\right)e(4190)e\left(\frac{41}{90}\right)e(2936)e\left(\frac{29}{36}\right)e(1160)e\left(\frac{11}{60}\right)e(8390)e\left(\frac{83}{90}\right)e(19180)e\left(\frac{19}{180}\right)e(815)e\left(\frac{8}{15}\right)e(4145)e\left(\frac{41}{45}\right)e(103180)e\left(\frac{103}{180}\right)e(1320)e\left(\frac{13}{20}\right)
sage: chi.jacobi_sum(n)
 
χ12825(10037,a)   \chi_{ 12825 }(10037,a) \; at   a=\;a = e.g. 2