Properties

Label 12825.pe
Modulus 1282512825
Conductor 1282512825
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(12825, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([110,99,20]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(23,12825))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 1282512825
Conductor: 1282512825
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1313 1414 1616 1717 2222
χ12825(23,)\chi_{12825}(23,\cdot) 11 11 e(49180)e\left(\frac{49}{180}\right) e(4990)e\left(\frac{49}{90}\right) e(736)e\left(\frac{7}{36}\right) e(4960)e\left(\frac{49}{60}\right) e(790)e\left(\frac{7}{90}\right) e(161180)e\left(\frac{161}{180}\right) e(715)e\left(\frac{7}{15}\right) e(445)e\left(\frac{4}{45}\right) e(77180)e\left(\frac{77}{180}\right) e(720)e\left(\frac{7}{20}\right)
χ12825(92,)\chi_{12825}(92,\cdot) 11 11 e(107180)e\left(\frac{107}{180}\right) e(1790)e\left(\frac{17}{90}\right) e(536)e\left(\frac{5}{36}\right) e(4760)e\left(\frac{47}{60}\right) e(4190)e\left(\frac{41}{90}\right) e(43180)e\left(\frac{43}{180}\right) e(1115)e\left(\frac{11}{15}\right) e(1745)e\left(\frac{17}{45}\right) e(91180)e\left(\frac{91}{180}\right) e(120)e\left(\frac{1}{20}\right)
χ12825(758,)\chi_{12825}(758,\cdot) 11 11 e(137180)e\left(\frac{137}{180}\right) e(4790)e\left(\frac{47}{90}\right) e(3536)e\left(\frac{35}{36}\right) e(1760)e\left(\frac{17}{60}\right) e(7190)e\left(\frac{71}{90}\right) e(13180)e\left(\frac{13}{180}\right) e(1115)e\left(\frac{11}{15}\right) e(245)e\left(\frac{2}{45}\right) e(61180)e\left(\frac{61}{180}\right) e(1120)e\left(\frac{11}{20}\right)
χ12825(803,)\chi_{12825}(803,\cdot) 11 11 e(113180)e\left(\frac{113}{180}\right) e(2390)e\left(\frac{23}{90}\right) e(1136)e\left(\frac{11}{36}\right) e(5360)e\left(\frac{53}{60}\right) e(2990)e\left(\frac{29}{90}\right) e(37180)e\left(\frac{37}{180}\right) e(1415)e\left(\frac{14}{15}\right) e(2345)e\left(\frac{23}{45}\right) e(49180)e\left(\frac{49}{180}\right) e(1920)e\left(\frac{19}{20}\right)
χ12825(842,)\chi_{12825}(842,\cdot) 11 11 e(127180)e\left(\frac{127}{180}\right) e(3790)e\left(\frac{37}{90}\right) e(1336)e\left(\frac{13}{36}\right) e(760)e\left(\frac{7}{60}\right) e(3190)e\left(\frac{31}{90}\right) e(83180)e\left(\frac{83}{180}\right) e(115)e\left(\frac{1}{15}\right) e(3745)e\left(\frac{37}{45}\right) e(71180)e\left(\frac{71}{180}\right) e(120)e\left(\frac{1}{20}\right)
χ12825(1472,)\chi_{12825}(1472,\cdot) 11 11 e(43180)e\left(\frac{43}{180}\right) e(4390)e\left(\frac{43}{90}\right) e(136)e\left(\frac{1}{36}\right) e(4360)e\left(\frac{43}{60}\right) e(1990)e\left(\frac{19}{90}\right) e(167180)e\left(\frac{167}{180}\right) e(415)e\left(\frac{4}{15}\right) e(4345)e\left(\frac{43}{45}\right) e(119180)e\left(\frac{119}{180}\right) e(920)e\left(\frac{9}{20}\right)
χ12825(1562,)\chi_{12825}(1562,\cdot) 11 11 e(31180)e\left(\frac{31}{180}\right) e(3190)e\left(\frac{31}{90}\right) e(2536)e\left(\frac{25}{36}\right) e(3160)e\left(\frac{31}{60}\right) e(4390)e\left(\frac{43}{90}\right) e(179180)e\left(\frac{179}{180}\right) e(1315)e\left(\frac{13}{15}\right) e(3145)e\left(\frac{31}{45}\right) e(23180)e\left(\frac{23}{180}\right) e(1320)e\left(\frac{13}{20}\right)
χ12825(2297,)\chi_{12825}(2297,\cdot) 11 11 e(83180)e\left(\frac{83}{180}\right) e(8390)e\left(\frac{83}{90}\right) e(1736)e\left(\frac{17}{36}\right) e(2360)e\left(\frac{23}{60}\right) e(8990)e\left(\frac{89}{90}\right) e(67180)e\left(\frac{67}{180}\right) e(1415)e\left(\frac{14}{15}\right) e(3845)e\left(\frac{38}{45}\right) e(79180)e\left(\frac{79}{180}\right) e(920)e\left(\frac{9}{20}\right)
χ12825(2342,)\chi_{12825}(2342,\cdot) 11 11 e(167180)e\left(\frac{167}{180}\right) e(7790)e\left(\frac{77}{90}\right) e(2936)e\left(\frac{29}{36}\right) e(4760)e\left(\frac{47}{60}\right) e(1190)e\left(\frac{11}{90}\right) e(163180)e\left(\frac{163}{180}\right) e(1115)e\left(\frac{11}{15}\right) e(3245)e\left(\frac{32}{45}\right) e(31180)e\left(\frac{31}{180}\right) e(120)e\left(\frac{1}{20}\right)
χ12825(2498,)\chi_{12825}(2498,\cdot) 11 11 e(169180)e\left(\frac{169}{180}\right) e(7990)e\left(\frac{79}{90}\right) e(1936)e\left(\frac{19}{36}\right) e(4960)e\left(\frac{49}{60}\right) e(3790)e\left(\frac{37}{90}\right) e(41180)e\left(\frac{41}{180}\right) e(715)e\left(\frac{7}{15}\right) e(3445)e\left(\frac{34}{45}\right) e(137180)e\left(\frac{137}{180}\right) e(720)e\left(\frac{7}{20}\right)
χ12825(2588,)\chi_{12825}(2588,\cdot) 11 11 e(121180)e\left(\frac{121}{180}\right) e(3190)e\left(\frac{31}{90}\right) e(736)e\left(\frac{7}{36}\right) e(160)e\left(\frac{1}{60}\right) e(4390)e\left(\frac{43}{90}\right) e(89180)e\left(\frac{89}{180}\right) e(1315)e\left(\frac{13}{15}\right) e(3145)e\left(\frac{31}{45}\right) e(113180)e\left(\frac{113}{180}\right) e(320)e\left(\frac{3}{20}\right)
χ12825(3323,)\chi_{12825}(3323,\cdot) 11 11 e(29180)e\left(\frac{29}{180}\right) e(2990)e\left(\frac{29}{90}\right) e(3536)e\left(\frac{35}{36}\right) e(2960)e\left(\frac{29}{60}\right) e(1790)e\left(\frac{17}{90}\right) e(121180)e\left(\frac{121}{180}\right) e(215)e\left(\frac{2}{15}\right) e(2945)e\left(\frac{29}{45}\right) e(97180)e\left(\frac{97}{180}\right) e(720)e\left(\frac{7}{20}\right)
χ12825(3683,)\chi_{12825}(3683,\cdot) 11 11 e(17180)e\left(\frac{17}{180}\right) e(1790)e\left(\frac{17}{90}\right) e(2336)e\left(\frac{23}{36}\right) e(1760)e\left(\frac{17}{60}\right) e(4190)e\left(\frac{41}{90}\right) e(133180)e\left(\frac{133}{180}\right) e(1115)e\left(\frac{11}{15}\right) e(1745)e\left(\frac{17}{45}\right) e(1180)e\left(\frac{1}{180}\right) e(1120)e\left(\frac{11}{20}\right)
χ12825(4037,)\chi_{12825}(4037,\cdot) 11 11 e(151180)e\left(\frac{151}{180}\right) e(6190)e\left(\frac{61}{90}\right) e(136)e\left(\frac{1}{36}\right) e(3160)e\left(\frac{31}{60}\right) e(7390)e\left(\frac{73}{90}\right) e(59180)e\left(\frac{59}{180}\right) e(1315)e\left(\frac{13}{15}\right) e(1645)e\left(\frac{16}{45}\right) e(83180)e\left(\frac{83}{180}\right) e(1320)e\left(\frac{13}{20}\right)
χ12825(4127,)\chi_{12825}(4127,\cdot) 11 11 e(139180)e\left(\frac{139}{180}\right) e(4990)e\left(\frac{49}{90}\right) e(2536)e\left(\frac{25}{36}\right) e(1960)e\left(\frac{19}{60}\right) e(790)e\left(\frac{7}{90}\right) e(71180)e\left(\frac{71}{180}\right) e(715)e\left(\frac{7}{15}\right) e(445)e\left(\frac{4}{45}\right) e(167180)e\left(\frac{167}{180}\right) e(1720)e\left(\frac{17}{20}\right)
χ12825(4433,)\chi_{12825}(4433,\cdot) 11 11 e(37180)e\left(\frac{37}{180}\right) e(3790)e\left(\frac{37}{90}\right) e(3136)e\left(\frac{31}{36}\right) e(3760)e\left(\frac{37}{60}\right) e(3190)e\left(\frac{31}{90}\right) e(173180)e\left(\frac{173}{180}\right) e(115)e\left(\frac{1}{15}\right) e(3745)e\left(\frac{37}{45}\right) e(161180)e\left(\frac{161}{180}\right) e(1120)e\left(\frac{11}{20}\right)
χ12825(4862,)\chi_{12825}(4862,\cdot) 11 11 e(11180)e\left(\frac{11}{180}\right) e(1190)e\left(\frac{11}{90}\right) e(1736)e\left(\frac{17}{36}\right) e(1160)e\left(\frac{11}{60}\right) e(5390)e\left(\frac{53}{90}\right) e(139180)e\left(\frac{139}{180}\right) e(815)e\left(\frac{8}{15}\right) e(1145)e\left(\frac{11}{45}\right) e(43180)e\left(\frac{43}{180}\right) e(1320)e\left(\frac{13}{20}\right)
χ12825(5063,)\chi_{12825}(5063,\cdot) 11 11 e(61180)e\left(\frac{61}{180}\right) e(6190)e\left(\frac{61}{90}\right) e(1936)e\left(\frac{19}{36}\right) e(160)e\left(\frac{1}{60}\right) e(7390)e\left(\frac{73}{90}\right) e(149180)e\left(\frac{149}{180}\right) e(1315)e\left(\frac{13}{15}\right) e(1645)e\left(\frac{16}{45}\right) e(173180)e\left(\frac{173}{180}\right) e(320)e\left(\frac{3}{20}\right)
χ12825(5153,)\chi_{12825}(5153,\cdot) 11 11 e(13180)e\left(\frac{13}{180}\right) e(1390)e\left(\frac{13}{90}\right) e(736)e\left(\frac{7}{36}\right) e(1360)e\left(\frac{13}{60}\right) e(7990)e\left(\frac{79}{90}\right) e(17180)e\left(\frac{17}{180}\right) e(415)e\left(\frac{4}{15}\right) e(1345)e\left(\frac{13}{45}\right) e(149180)e\left(\frac{149}{180}\right) e(1920)e\left(\frac{19}{20}\right)
χ12825(5222,)\chi_{12825}(5222,\cdot) 11 11 e(143180)e\left(\frac{143}{180}\right) e(5390)e\left(\frac{53}{90}\right) e(536)e\left(\frac{5}{36}\right) e(2360)e\left(\frac{23}{60}\right) e(5990)e\left(\frac{59}{90}\right) e(7180)e\left(\frac{7}{180}\right) e(1415)e\left(\frac{14}{15}\right) e(845)e\left(\frac{8}{45}\right) e(19180)e\left(\frac{19}{180}\right) e(920)e\left(\frac{9}{20}\right)
χ12825(5888,)\chi_{12825}(5888,\cdot) 11 11 e(101180)e\left(\frac{101}{180}\right) e(1190)e\left(\frac{11}{90}\right) e(3536)e\left(\frac{35}{36}\right) e(4160)e\left(\frac{41}{60}\right) e(5390)e\left(\frac{53}{90}\right) e(49180)e\left(\frac{49}{180}\right) e(815)e\left(\frac{8}{15}\right) e(1145)e\left(\frac{11}{45}\right) e(133180)e\left(\frac{133}{180}\right) e(320)e\left(\frac{3}{20}\right)
χ12825(5933,)\chi_{12825}(5933,\cdot) 11 11 e(77180)e\left(\frac{77}{180}\right) e(7790)e\left(\frac{77}{90}\right) e(1136)e\left(\frac{11}{36}\right) e(1760)e\left(\frac{17}{60}\right) e(1190)e\left(\frac{11}{90}\right) e(73180)e\left(\frac{73}{180}\right) e(1115)e\left(\frac{11}{15}\right) e(3245)e\left(\frac{32}{45}\right) e(121180)e\left(\frac{121}{180}\right) e(1120)e\left(\frac{11}{20}\right)
χ12825(5972,)\chi_{12825}(5972,\cdot) 11 11 e(163180)e\left(\frac{163}{180}\right) e(7390)e\left(\frac{73}{90}\right) e(1336)e\left(\frac{13}{36}\right) e(4360)e\left(\frac{43}{60}\right) e(4990)e\left(\frac{49}{90}\right) e(47180)e\left(\frac{47}{180}\right) e(415)e\left(\frac{4}{15}\right) e(2845)e\left(\frac{28}{45}\right) e(179180)e\left(\frac{179}{180}\right) e(920)e\left(\frac{9}{20}\right)
χ12825(6248,)\chi_{12825}(6248,\cdot) 11 11 e(89180)e\left(\frac{89}{180}\right) e(8990)e\left(\frac{89}{90}\right) e(2336)e\left(\frac{23}{36}\right) e(2960)e\left(\frac{29}{60}\right) e(7790)e\left(\frac{77}{90}\right) e(61180)e\left(\frac{61}{180}\right) e(215)e\left(\frac{2}{15}\right) e(4445)e\left(\frac{44}{45}\right) e(37180)e\left(\frac{37}{180}\right) e(720)e\left(\frac{7}{20}\right)
χ12825(6602,)\chi_{12825}(6602,\cdot) 11 11 e(79180)e\left(\frac{79}{180}\right) e(7990)e\left(\frac{79}{90}\right) e(136)e\left(\frac{1}{36}\right) e(1960)e\left(\frac{19}{60}\right) e(3790)e\left(\frac{37}{90}\right) e(131180)e\left(\frac{131}{180}\right) e(715)e\left(\frac{7}{15}\right) e(3445)e\left(\frac{34}{45}\right) e(47180)e\left(\frac{47}{180}\right) e(1720)e\left(\frac{17}{20}\right)
χ12825(6692,)\chi_{12825}(6692,\cdot) 11 11 e(67180)e\left(\frac{67}{180}\right) e(6790)e\left(\frac{67}{90}\right) e(2536)e\left(\frac{25}{36}\right) e(760)e\left(\frac{7}{60}\right) e(6190)e\left(\frac{61}{90}\right) e(143180)e\left(\frac{143}{180}\right) e(115)e\left(\frac{1}{15}\right) e(2245)e\left(\frac{22}{45}\right) e(131180)e\left(\frac{131}{180}\right) e(120)e\left(\frac{1}{20}\right)
χ12825(6998,)\chi_{12825}(6998,\cdot) 11 11 e(109180)e\left(\frac{109}{180}\right) e(1990)e\left(\frac{19}{90}\right) e(3136)e\left(\frac{31}{36}\right) e(4960)e\left(\frac{49}{60}\right) e(6790)e\left(\frac{67}{90}\right) e(101180)e\left(\frac{101}{180}\right) e(715)e\left(\frac{7}{15}\right) e(1945)e\left(\frac{19}{45}\right) e(17180)e\left(\frac{17}{180}\right) e(720)e\left(\frac{7}{20}\right)
χ12825(7427,)\chi_{12825}(7427,\cdot) 11 11 e(119180)e\left(\frac{119}{180}\right) e(2990)e\left(\frac{29}{90}\right) e(1736)e\left(\frac{17}{36}\right) e(5960)e\left(\frac{59}{60}\right) e(1790)e\left(\frac{17}{90}\right) e(31180)e\left(\frac{31}{180}\right) e(215)e\left(\frac{2}{15}\right) e(2945)e\left(\frac{29}{45}\right) e(7180)e\left(\frac{7}{180}\right) e(1720)e\left(\frac{17}{20}\right)
χ12825(7472,)\chi_{12825}(7472,\cdot) 11 11 e(23180)e\left(\frac{23}{180}\right) e(2390)e\left(\frac{23}{90}\right) e(2936)e\left(\frac{29}{36}\right) e(2360)e\left(\frac{23}{60}\right) e(2990)e\left(\frac{29}{90}\right) e(127180)e\left(\frac{127}{180}\right) e(1415)e\left(\frac{14}{15}\right) e(2345)e\left(\frac{23}{45}\right) e(139180)e\left(\frac{139}{180}\right) e(920)e\left(\frac{9}{20}\right)
χ12825(7628,)\chi_{12825}(7628,\cdot) 11 11 e(133180)e\left(\frac{133}{180}\right) e(4390)e\left(\frac{43}{90}\right) e(1936)e\left(\frac{19}{36}\right) e(1360)e\left(\frac{13}{60}\right) e(1990)e\left(\frac{19}{90}\right) e(77180)e\left(\frac{77}{180}\right) e(415)e\left(\frac{4}{15}\right) e(4345)e\left(\frac{43}{45}\right) e(29180)e\left(\frac{29}{180}\right) e(1920)e\left(\frac{19}{20}\right)
χ12825(7787,)\chi_{12825}(7787,\cdot) 11 11 e(71180)e\left(\frac{71}{180}\right) e(7190)e\left(\frac{71}{90}\right) e(536)e\left(\frac{5}{36}\right) e(1160)e\left(\frac{11}{60}\right) e(2390)e\left(\frac{23}{90}\right) e(79180)e\left(\frac{79}{180}\right) e(815)e\left(\frac{8}{15}\right) e(2645)e\left(\frac{26}{45}\right) e(163180)e\left(\frac{163}{180}\right) e(1320)e\left(\frac{13}{20}\right)