Properties

Label 1295.778
Modulus $1295$
Conductor $5$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1295, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,0,0]))
 
pari: [g,chi] = znchar(Mod(778,1295))
 

Basic properties

Modulus: \(1295\)
Conductor: \(5\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{5}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1295.t

\(\chi_{1295}(778,\cdot)\) \(\chi_{1295}(1037,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{5})\)

Values on generators

\((1037,556,631)\) → \((-i,1,1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 1295 }(778, a) \) \(-1\)\(1\)\(-i\)\(i\)\(-1\)\(1\)\(i\)\(-1\)\(1\)\(-i\)\(i\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1295 }(778,a) \;\) at \(\;a = \) e.g. 2