Properties

Label 1295.778
Modulus 12951295
Conductor 55
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([3,0,0]))
 
Copy content pari:[g,chi] = znchar(Mod(778,1295))
 

Basic properties

Modulus: 12951295
Conductor: 55
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 44
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ5(3,)\chi_{5}(3,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1295.t

χ1295(778,)\chi_{1295}(778,\cdot) χ1295(1037,)\chi_{1295}(1037,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: Q(ζ5)\Q(\zeta_{5})

Values on generators

(1037,556,631)(1037,556,631)(i,1,1)(-i,1,1)

First values

aa 1-1112233446688991111121213131616
χ1295(778,a) \chi_{ 1295 }(778, a) 1-111i-iii1-111ii1-111i-iii11
Copy content sage:chi.jacobi_sum(n)
 
χ1295(778,a)   \chi_{ 1295 }(778,a) \; at   a=\;a = e.g. 2