from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1295, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([3,0,0]))
pari: [g,chi] = znchar(Mod(778,1295))
Basic properties
Modulus: | \(1295\) | |
Conductor: | \(5\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(4\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{5}(3,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1295.t
\(\chi_{1295}(778,\cdot)\) \(\chi_{1295}(1037,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\mathbb{Q}(i)\) |
Fixed field: | \(\Q(\zeta_{5})\) |
Values on generators
\((1037,556,631)\) → \((-i,1,1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 1295 }(778, a) \) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(1\) | \(i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(1\) |
sage: chi.jacobi_sum(n)