Properties

Label 1296.17
Modulus 12961296
Conductor 2727
Order 1818
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,11]))
 
pari: [g,chi] = znchar(Mod(17,1296))
 

Basic properties

Modulus: 12961296
Conductor: 2727
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ27(23,)\chi_{27}(23,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1296.bc

χ1296(17,)\chi_{1296}(17,\cdot) χ1296(305,)\chi_{1296}(305,\cdot) χ1296(449,)\chi_{1296}(449,\cdot) χ1296(737,)\chi_{1296}(737,\cdot) χ1296(881,)\chi_{1296}(881,\cdot) χ1296(1169,)\chi_{1296}(1169,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(1135,325,1217)(1135,325,1217)(1,1,e(1118))(1,1,e\left(\frac{11}{18}\right))

First values

aa 1-111557711111313171719192323252529293131
χ1296(17,a) \chi_{ 1296 }(17, a) 1-111e(118)e\left(\frac{1}{18}\right)e(79)e\left(\frac{7}{9}\right)e(1718)e\left(\frac{17}{18}\right)e(89)e\left(\frac{8}{9}\right)e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)e(1318)e\left(\frac{13}{18}\right)e(19)e\left(\frac{1}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(29)e\left(\frac{2}{9}\right)
sage: chi.jacobi_sum(n)
 
χ1296(17,a)   \chi_{ 1296 }(17,a) \; at   a=\;a = e.g. 2