Properties

Label 1296.19
Modulus $1296$
Conductor $432$
Order $36$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,27,32]))
 
pari: [g,chi] = znchar(Mod(19,1296))
 

Basic properties

Modulus: \(1296\)
Conductor: \(432\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{432}(115,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1296.bi

\(\chi_{1296}(19,\cdot)\) \(\chi_{1296}(91,\cdot)\) \(\chi_{1296}(235,\cdot)\) \(\chi_{1296}(307,\cdot)\) \(\chi_{1296}(451,\cdot)\) \(\chi_{1296}(523,\cdot)\) \(\chi_{1296}(667,\cdot)\) \(\chi_{1296}(739,\cdot)\) \(\chi_{1296}(883,\cdot)\) \(\chi_{1296}(955,\cdot)\) \(\chi_{1296}(1099,\cdot)\) \(\chi_{1296}(1171,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.614667125325361522818798575155151578949632894783197825857500612833312768.1

Values on generators

\((1135,325,1217)\) → \((-1,-i,e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1296 }(19, a) \) \(-1\)\(1\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{5}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1296 }(19,a) \;\) at \(\;a = \) e.g. 2