Properties

Label 1296.907
Modulus $1296$
Conductor $1296$
Order $108$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([54,27,8]))
 
pari: [g,chi] = znchar(Mod(907,1296))
 

Basic properties

Modulus: \(1296\)
Conductor: \(1296\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1296.bt

\(\chi_{1296}(43,\cdot)\) \(\chi_{1296}(67,\cdot)\) \(\chi_{1296}(115,\cdot)\) \(\chi_{1296}(139,\cdot)\) \(\chi_{1296}(187,\cdot)\) \(\chi_{1296}(211,\cdot)\) \(\chi_{1296}(259,\cdot)\) \(\chi_{1296}(283,\cdot)\) \(\chi_{1296}(331,\cdot)\) \(\chi_{1296}(355,\cdot)\) \(\chi_{1296}(403,\cdot)\) \(\chi_{1296}(427,\cdot)\) \(\chi_{1296}(475,\cdot)\) \(\chi_{1296}(499,\cdot)\) \(\chi_{1296}(547,\cdot)\) \(\chi_{1296}(571,\cdot)\) \(\chi_{1296}(619,\cdot)\) \(\chi_{1296}(643,\cdot)\) \(\chi_{1296}(691,\cdot)\) \(\chi_{1296}(715,\cdot)\) \(\chi_{1296}(763,\cdot)\) \(\chi_{1296}(787,\cdot)\) \(\chi_{1296}(835,\cdot)\) \(\chi_{1296}(859,\cdot)\) \(\chi_{1296}(907,\cdot)\) \(\chi_{1296}(931,\cdot)\) \(\chi_{1296}(979,\cdot)\) \(\chi_{1296}(1003,\cdot)\) \(\chi_{1296}(1051,\cdot)\) \(\chi_{1296}(1075,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((1135,325,1217)\) → \((-1,i,e\left(\frac{2}{27}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1296 }(907, a) \) \(-1\)\(1\)\(e\left(\frac{103}{108}\right)\)\(e\left(\frac{5}{27}\right)\)\(e\left(\frac{77}{108}\right)\)\(e\left(\frac{37}{108}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{49}{54}\right)\)\(e\left(\frac{53}{108}\right)\)\(e\left(\frac{53}{54}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1296 }(907,a) \;\) at \(\;a = \) e.g. 2