Properties

Label 1305.1304
Modulus 13051305
Conductor 435435
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1]))
 
pari: [g,chi] = znchar(Mod(1304,1305))
 

Basic properties

Modulus: 13051305
Conductor: 435435
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ435(434,)\chi_{435}(434,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1305.b

χ1305(1304,)\chi_{1305}(1304,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(435)\Q(\sqrt{-435})

Values on generators

(146,262,901)(146,262,901)(1,1,1)(-1,-1,-1)

First values

aa 1-11122447788111113131414161617171919
χ1305(1304,a) \chi_{ 1305 }(1304, a) 1-1111-1111-11-1111-111111-11-1
sage: chi.jacobi_sum(n)
 
χ1305(1304,a)   \chi_{ 1305 }(1304,a) \; at   a=\;a = e.g. 2