Properties

Label 1309.1042
Modulus $1309$
Conductor $1309$
Order $80$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1309, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,24,25]))
 
pari: [g,chi] = znchar(Mod(1042,1309))
 

Basic properties

Modulus: \(1309\)
Conductor: \(1309\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1309.cs

\(\chi_{1309}(6,\cdot)\) \(\chi_{1309}(41,\cdot)\) \(\chi_{1309}(62,\cdot)\) \(\chi_{1309}(90,\cdot)\) \(\chi_{1309}(139,\cdot)\) \(\chi_{1309}(160,\cdot)\) \(\chi_{1309}(167,\cdot)\) \(\chi_{1309}(216,\cdot)\) \(\chi_{1309}(244,\cdot)\) \(\chi_{1309}(398,\cdot)\) \(\chi_{1309}(447,\cdot)\) \(\chi_{1309}(503,\cdot)\) \(\chi_{1309}(524,\cdot)\) \(\chi_{1309}(601,\cdot)\) \(\chi_{1309}(622,\cdot)\) \(\chi_{1309}(657,\cdot)\) \(\chi_{1309}(734,\cdot)\) \(\chi_{1309}(755,\cdot)\) \(\chi_{1309}(776,\cdot)\) \(\chi_{1309}(811,\cdot)\) \(\chi_{1309}(853,\cdot)\) \(\chi_{1309}(860,\cdot)\) \(\chi_{1309}(930,\cdot)\) \(\chi_{1309}(1014,\cdot)\) \(\chi_{1309}(1042,\cdot)\) \(\chi_{1309}(1091,\cdot)\) \(\chi_{1309}(1119,\cdot)\) \(\chi_{1309}(1161,\cdot)\) \(\chi_{1309}(1168,\cdot)\) \(\chi_{1309}(1196,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((1123,596,309)\) → \((-1,e\left(\frac{3}{10}\right),e\left(\frac{5}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(12\)\(13\)
\( \chi_{ 1309 }(1042, a) \) \(-1\)\(1\)\(e\left(\frac{27}{40}\right)\)\(e\left(\frac{17}{80}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{21}{80}\right)\)\(e\left(\frac{71}{80}\right)\)\(e\left(\frac{1}{40}\right)\)\(e\left(\frac{17}{40}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{1}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1309 }(1042,a) \;\) at \(\;a = \) e.g. 2